逻辑回归(Logistic Regression)是机器学习中的一种分类模型,逻辑回归是一种分类算法,虽然名字中带有回归。由于算法的简单和高效,在实际中应用非常广泛。

逻辑回归的应用场景

  • 广告点击率
  • 是否为垃圾邮件
  • 是否患病
  • 金融诈骗
  • 虚假账号

看到上面的例子,我们可以发现其中的特点,那就是都属于两个类别之间的判断。逻辑回归就是解决二分类问题的利器

逻辑回归的原理

要想掌握逻辑回归,必须掌握两点:

  • 逻辑回归中,其输入值是什么
  • 如何判断逻辑回归的输出

2.1 输入

逻辑回归的输入就是一个线性回归的结果。

2.2 激活函数

  • sigmoid函数 g(wT,x)=11+e−h(w)=11+e−wTxg(w​T​​,x)=​1+e​−h(w)​​​​1​​=​1+e​−w​T​​x​​​​1​​
  • 判断标准
    • 回归的结果输入到sigmoid函数当中
    • 输出结果:[0, 1]区间中的一个概率值,默认为0.5为阈值
输出结果解释(重要):假设有两个类别A,B,并且假设我们的概率值为属于A(1)这个类别的概率值。现在有一个样本的输入到逻辑回归输出结果0.55,那么这个概率值超过0.5,意味着我们训练或者预测的结果就是A(1)类别。那么反之,如果得出结果为0.3那么,训练或者预测结果就为B(0)类别。

损失以及优化

3.1 损失

逻辑回归的损失,称之为对数似然损失

3.2 优化

同样使用梯度下降优化算法,去减少损失函数的值。这样去更新逻辑回归前面对应算法的权重参数,提升原本属于1类别的概率,降低原本是0类别的概率。

逻辑回归api

  • sklearn.linear_model.LogisticRegression(solver=’liblinear’, penalty=‘l2’, C = 1.0)
    • solver可选参数:{‘liblinear’, ‘sag’, ‘saga’,’newton-cg’, ‘lbfgs’},
      • 默认: ‘liblinear’;用于优化问题的算法。
      • 对于小数据集来说,“liblinear”是个不错的选择,而“sag”和’saga’对于大型数据集会更快。
      • 对于多类问题,只有’newton-cg’, ‘sag’, ‘saga’和’lbfgs’可以处理多项损失;“liblinear”仅限于“one-versus-rest”分类。
    • penalty:正则化的种类
    • C:正则化力度

默认将类别数量少的当做正例

LogisticRegression方法相当于 SGDClassifier(loss=”log”, penalty=” “),SGDClassifier实现了一个普通的随机梯度下降学习。而使用LogisticRegression(实现了SAG)

案例:癌症分类预测-良/恶性乳腺癌肿瘤预测

原始数据的下载地址:https://archive.ics.uci.edu/ml/machine-learning-databases/


    数据描述

    (1)699条样本,共11列数据,第一列用语检索的id,后9列分别是与肿瘤

    相关的医学特征,最后一列表示肿瘤类型的数值。

    (2)包含16个缺失值,用”?”标出。

案例分析

1.获取数据
2.基本数据处理
2.1 缺失值处理
2.2 确定特征值,目标值
2.3 分割数据
3.特征工程(标准化)
4.机器学习(逻辑回归)
5.模型评估

代码实现

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression

import ssl
ssl._create_default_https_context = ssl._create_unverified_context

# 1.获取数据
names = ['Sample code number', 'Clump Thickness', 'Uniformity of Cell Size', 'Uniformity of Cell Shape',
                   'Marginal Adhesion', 'Single Epithelial Cell Size', 'Bare Nuclei', 'Bland Chromatin',
                   'Normal Nucleoli', 'Mitoses', 'Class']

data = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data",
                  names=names)
data.head()

# 2.基本数据处理
# 2.1 缺失值处理
data = data.replace(to_replace="?", value=np.NaN)
data = data.dropna()
# 2.2 确定特征值,目标值
x = data.iloc[:, 1:10]
x.head()
y = data["Class"]
y.head()
# 2.3 分割数据
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=22)

# 3.特征工程(标准化)
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)

# 4.机器学习(逻辑回归)
estimator = LogisticRegression()
estimator.fit(x_train, y_train)

# 5.模型评估
y_predict = estimator.predict(x_test)
y_predict
estimator.score(x_test, y_test)

在很多分类场景当中我们不一定只关注预测的准确率!!!!!

比如以这个癌症举例子!!!我们并不关注预测的准确率,而是关注在所有的样本当中,癌症患者有没有被全部预测(检测)出来。

作者 张, 宴银

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注